- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Kalnay, Eugenia (2)
-
Mote, Safa (2)
-
Bach, Eviatar (1)
-
Chang, Chu‐Chun (1)
-
Chen, Tse‐Chun (1)
-
Da, Cheng (1)
-
Ghil, Michael (1)
-
Krishnamurthy, V. (1)
-
Sharma, A. Surjalal (1)
-
Shukla, Jagadish (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Predicting the temporal and spatial patterns of South Asian monsoon rainfall within a season is of critical importance due to its impact on agriculture, water availability, and flooding. The monsoon intraseasonal oscillation (MISO) is a robust northward-propagating mode that determines the active and break phases of the monsoon and much of the regional distribution of rainfall. However, dynamical atmospheric forecast models predict this mode poorly. Data-driven methods for MISO prediction have shown more skill, but only predict the portion of the rainfall corresponding to MISO rather than the full rainfall signal. Here, we combine state-of-the-art ensemble precipitation forecasts from a high-resolution atmospheric model with data-driven forecasts of MISO. The ensemble members of the detailed atmospheric model are projected onto a lower-dimensional subspace corresponding to the MISO dynamics and are then weighted according to their distance from the data-driven MISO forecast in this subspace. We thereby achieve improvements in rainfall forecasts over India, as well as the broader monsoon region, at 10- to 30-d lead times, an interval that is generally considered to be a predictability gap. The temporal correlation of rainfall forecasts is improved by up to 0.28 in this time range. Our results demonstrate the potential of leveraging the predictability of intraseasonal oscillations to improve extended-range forecasts; more generally, they point toward a future of combining dynamical and data-driven forecasts for Earth system prediction.more » « less
-
Chang, Chu‐Chun; Chen, Tse‐Chun; Kalnay, Eugenia; Da, Cheng; Mote, Safa (, Geophysical Research Letters)Abstract Ensemble Forecast Sensitivity to Observation (EFSO) is a technique that can efficiently identify the beneficial/detrimental impacts of every observation in ensemble‐based data assimilation (DA). While EFSO has been successfully employed on atmospheric DA, it has never been applied to ocean or coupled DA due to the lack of a suitable error norm for oceanic variables. This study introduces a new density‐based error norm incorporating sea temperature and salinity forecast errors, making EFSO applicable to ocean DA for the first time. We implemented the oceanic EFSO on the CFSv2‐LETKF and investigated the impact of ocean observations under a weakly coupled DA framework. By removing the detrimental ocean observations detected by EFSO, the CFSv2 forecasts were significantly improved, showing the validation of impact estimation and the great potential of EFSO to be extended as a data selection criterion.more » « less
An official website of the United States government
